Study on the interfacial interaction between ammonium perchlorate and hydroxyl-terminated polybutadiene in solid propellants by molecular dynamics simulation

نویسندگان

چکیده

Abstract The interfacial interaction between the main oxidant filler ammonium perchlorate (AP) and hydroxyl-terminated polybutadiene (HTPB) matrix in AP/HTPB propellants were studied via an all-atom molecular dynamics simulation. results of simulation showed effects microscopic cross-linked structure matrix, stretching rate during uniaxial stretching, contact area on mechanical properties, such as stress strain composite solid propellant. Among aforementioned factors, considerably affects properties propellant, maximum propellant proportionally increases with rate. When defects introduced surface AP filler, affected type molecules. Owing to molecules atoms, behaviour molecule changed change its stretching. Molecular simulations used explore characteristics at AP–HTPB interface propellants. further revealed mechanism provided a theoretical basis for design high-performance

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Study and Thermal Decomposition Behavior of Magnesium-Sodium Nitrate Based on Hydroxyl-Terminated Polybutadiene

This paper has been utilizing the simultaneous ThermoGravimetric analysis and Differential Scanning Calorimetry (TG–DSC) to investigate the thermal decomposition of magnesium-sodium nitrate pyrotechnic composition based HTPB resin. The thermal behaviors of different samples with various fuel-oxidizer ratio contents were determined. Decomposition kinetic was investigated by evaluating the in...

متن کامل

مروری بر رفتار تجزیه حرارتی آمونیوم پرکلرات در حضور نانوکاتالیزورهای اسپینلی(علمی-ترویجی)

Composite solid propellants are the major source of chemical energy in space vehicles and missiles. Composite propellants are composed of crystalline oxidizer particles dispersed in polymeric fuel binder. Ammonium perchlorate (AP) is used as the most common oxidizer and hydroxyl terminated polybutadiene (HTPB) as the fuel binder. The ballistics of a composite propellant can be improved by addin...

متن کامل

تاثیر استفاده از آمونیوم پرکلرات با دو اندازه (درشت و ریز) بر ویسکوزیته پیشرانه جامد مرکب‌(علمی-پژوهشی)

Concentrated suspension of binders in composite propellant causes a complex phenomena so that controlling of rheology properties is difficult due to high percentage of fillers. Composite solid propellant contains paste suspension of mixtures of different components, e.g. oxidizer, fuel and binder. Increasing the percentage of solid phase without increment of viscosity is an important subject in...

متن کامل

Spectroscopic, Docking and Molecular Dynamics Simulation Studies on the Interaction of Etofylline and Human Serum Albumin

The purpose of this study is to investigate the interaction of Etofylline as an established drug for asthma remedy, with the major transport protein in human blood circulation, the human serum albumin (HSA). In this respect, the fluorescence and circular dichroism (CD) spectroscopy techniques, along with the molecular docking and molecular dynamics simulation methods were employed. Analysis of ...

متن کامل

Studies of Interaction between Propranolol and Human Serum Albumin in the Presence of DMMP by Molecular Spectroscopy and Molecular Dynamics Simulation

The interaction between propranolol (PROP) and human serum albumin (HSA) was studied in the presence of dimethyl methylphosphonate (DMMP). DMMP is usually considered as a simulant for chemical warfare agents (CWAs). For this purpose fluorescence quenching, resonance light scattering (RLS), synchronous, three-dimensional fluorescence spectroscopy and molecular dynamics (MD) simulation were emplo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E-polymers

سال: 2022

ISSN: ['1618-7229', '2197-4586']

DOI: https://doi.org/10.1515/epoly-2022-0016